https://nova.newcastle.edu.au/vital/access/ /manager/Index en-au 5 Associations of autozygosity with a broad range of human phenotypes https://nova.newcastle.edu.au/vital/access/ /manager/Repository/uon:45256 1.4 million individuals, we show that FROH is significantly associated (p < 0.0005) with apparently deleterious changes in 32 out of 100 traits analysed. These changes are associated with runs of homozygosity (ROH), but not with common variant homozygosity, suggesting that genetic variants associated with inbreeding depression are predominantly rare. The effect on fertility is striking: FROH equivalent to the offspring of first cousins is associated with a 55% decrease [95% CI 44–66%] in the odds of having children. Finally, the effects of FROH are confirmed within full-sibling pairs, where the variation in FROH is independent of all environmental confounding.]]> Wed 26 Oct 2022 20:06:39 AEDT ]]> Serum magnesium and calcium levels in relation to ischemic stroke: mendelian randomization study https://nova.newcastle.edu.au/vital/access/ /manager/Repository/uon:48519 p = 1.3 x 10−4) for all ischemic stroke, 0.63 (95% CI 0.50–0.80; p = 1.6 x 10−4) for cardioembolic stroke, and 0.60 (95% CI 0.44–0.82; p = 0.001) for large artery stroke; there was no association with small vessel stroke (odds ratio 0.90, 95% CI 0.67–1.20; p = 0.46). Only the association with cardioembolic stroke was robust in sensitivity analyses. There was no association of genetically predicted serum calcium concentrations with all ischemic stroke (per 0.5 mg/dL [about 1 SD] increase in serum calcium: odds ratio 1.03, 95% CI 0.88–1.21) or with any subtype. Conclusions: This study found that genetically higher serum magnesium concentrations are associated with a reduced risk of cardioembolic stroke but found no significant association of genetically higher serum calcium concentrations with any ischemic stroke subtype.]]> Wed 22 Mar 2023 17:11:50 AEDT ]]> Multi-ancestry genome-wide association analyses improve resolution of genes and pathways influencing lung function and chronic obstructive pulmonary disease risk https://nova.newcastle.edu.au/vital/access/ /manager/Repository/uon:53295 Tue 21 Nov 2023 11:54:41 AEDT ]]> Dairy intake and body composition and cardiometabolic traits among adults: mendelian randomization analysis of 182041 individuals from 18 studies https://nova.newcastle.edu.au/vital/access/ /manager/Repository/uon:48483 LCT-13910 C/T, rs4988235) associated with dairy intake as an instrumental variable (IV). The causal effects of dairy intake on body composition and cardiometabolic traits (lipids, glycemic traits, and inflammatory factors) were quantified by IV estimators among 182041 participants from 18 studies. Results: Each 1 serving/day higher dairy intake was associated with higher lean mass [β (SE) = 0.117 kg (0.035); P = 0.001], higher hemoglobin A1c [0.009% (0.002); P < 0.001], lower LDL [-0.014 mmol/L (0.006); P = 0.013], total cholesterol (TC) [-0.012 mmol/L (0.005); P = 0.023], and non-HDL [-0.012 mmol/L (0.005); P = 0.028]. The LCT-13910 C/T CT + TT genotype was associated with 0.214 more dairy servings/day (SE = 0.047; P < 0.001), 0.284 cm higher waist circumference (SE = 0.118; P = 0.017), 0.112 kg higher lean mass (SE = 0.027; P = 3.8 x 10-5), 0.032 mmol/L lower LDL (SE = 0.009; P = 0.001), and 0.032 mmol/L lower TC (SE = 0.010; P = 0.001). Genetically higher dairy intake was associated with increased lean mass [0.523 kg per serving/day (0.170); P = 0.002] after correction for multiple testing (0.05/18). However, we find that genetically higher dairy intake was not associated with lipids and glycemic traits. Conclusions: The present study provides evidence to support a potential causal effect of higher dairy intake on increased lean mass among adults. Our findings suggest that the observational associations of dairy intake with lipids and glycemic traits may be the result of confounding.]]> Mon 20 Mar 2023 10:41:47 AEDT ]]>